

## Year 9 Physics Curriculum

| Unit             | Core knowledge/skill       | Sequence:               | Assessment                                  | Literacy,            | Key areas of ACP and         | Home learning and            |
|------------------|----------------------------|-------------------------|---------------------------------------------|----------------------|------------------------------|------------------------------|
|                  | development                |                         |                                             | numeracy, PSHE,      | VAA development:             | enrichment                   |
|                  |                            |                         |                                             | FBV, other links     |                              |                              |
| Force Fields and | This topic starts by       | 9Ja Mission to Mars     | Starter questions                           | Literacy: 9Ja        | Connection finding (linking) | Homework typically set via   |
| Electromagnets   | revising previous          | 9Ja Force Fields        |                                             | Cohesion in          | to use connections, to       | online platforms such as     |
|                  | work on magnetic and       | 9Ja Cohesion in         | Exam-type questions                         | Writing              | generalise the abstract      | Isaac Physics, Active Learn. |
|                  | gravitational fields,      | Writing                 |                                             |                      | concept of a field,          | Worksheets.                  |
|                  | then introduces static     | 9Jb Static Electricity  | Hinge questions                             | Numeracy: 9Jd        | ubiquitous in physics, and   |                              |
|                  | electricity and the idea   | 9Jc Current Electricity |                                             | Rounding             | apply it to gravity,         | Exam preparation via exam    |
|                  | of an electric field. Work | 9Jd Resistance          | Use of web-based                            | Numbers              | magnetism and charged        | / test papers.               |
|                  | on current electricity is  | 9Jd Rounding            | applications to assess                      |                      | objects.                     |                              |
|                  | ovtondod to look           | Qla Electromagnets      | (o.g. Jsaac Physics                         |                      |                              |                              |
|                  | at resistance              | 91e Humans in Space     | (e.g. isdac Friysics,<br>Active Learn etc.) |                      | where the link between       |                              |
|                  | calculations and at        | ose marnans in space    | Active Learn etc.)                          |                      | seemingly disparate          |                              |
|                  | some uses                  |                         | There is a Working                          |                      | magnetic and electric        |                              |
|                  | of electromagnets          |                         | Scientifically                              |                      | phenomena is made plain      |                              |
|                  | er erectionnaghete.        |                         | opportunity looking                         |                      |                              |                              |
|                  |                            |                         | at decimal places and                       |                      |                              |                              |
|                  |                            |                         | significant figures.                        |                      |                              |                              |
|                  |                            |                         |                                             |                      |                              |                              |
|                  |                            |                         | End-of-topic tests.                         |                      |                              |                              |
| Motion           | This topic involves a      | SP1a Vectors and        | Starter questions                           | Literacy: key words, | Risk-taking                  | Homework typically set via   |
|                  | certain amount of          | Scalars                 |                                             | definitions,         | Being brave enough to        | online platforms such as     |
|                  | quantitative work and      | SP1b Distance/time      | Exam-type questions                         | summary notes.       | work in unfamiliar contexts  | Tassomai, Isaac Physics,     |
|                  | some maths skills will be  | Graphs                  |                                             |                      | such as differentiating      | Active Learn.                |
|                  | practised. Vectors are     | SP1c Acceleration       | Hinge questions                             |                      | between scalar and vector    |                              |
|                  | discussed. Students will   | SP1d Velocity/time      |                                             |                      | quantities                   | Exam preparation via exam    |
|                  | learn that other           | Graphs                  | Use of web-based                            |                      |                              | papers                       |
|                  | quantities besides force   |                         | applications to assess                      | Numeracy:            |                              |                              |
|                  | have magnitude and         |                         | knowledge in lesson                         | summary notes,       |                              |                              |
|                  | direction and are vector   |                         | (e.g. Isaac Physics,                        | equation practice,   | Complex and multi-step       |                              |
|                  | quantities and will        |                         | Educake, Active Learn                       | students are         | problem solving              |                              |
|                  | compare these with         |                         |                                             | advised to practice  |                              |                              |



| Unit | Core knowledge/skill                      | Sequence: | Assessment               | Literacy,             | Key areas of ACP and        | Home learning and |
|------|-------------------------------------------|-----------|--------------------------|-----------------------|-----------------------------|-------------------|
|      | development                               |           |                          | numeracy, PSHE,       | VAA development:            | enrichment        |
|      |                                           |           |                          | FBV, other links      |                             |                   |
|      | quantities that only                      |           | etc.)                    | using the free 23     | to break down a task (e.g., |                   |
|      | have magnitude, scalar                    |           |                          | Equations app,        | graphs), decide on a        |                   |
|      | quantities. Students use                  |           | End-of-topic tests.      |                       | suitable approach, and then |                   |
|      | the equation average                      |           |                          | General maths         | act. For example            |                   |
|      | speed = total distance /                  |           |                          | skills (e.g.          | interpreting an object's    |                   |
|      | total time, plot distance                 |           | End of year exam         | rearranging           | motion through a            |                   |
|      | time graphs and                           |           | (PPE).                   | equations, graph      | distance/time or            |                   |
|      | determine speed from                      |           |                          | plotting, standards   | velocity/time graph.        |                   |
|      | the gradient of a                         |           | Mathematical skills will | form , SI prefixes)   |                             |                   |
|      | distance-time graph.                      |           | be assessed through      |                       |                             |                   |
|      | Students will see                         |           | examinations. The        | Equations students    |                             |                   |
|      | examples of objects, like                 |           | minimum level of         | are required to       |                             |                   |
|      | trolleys accelerating                     |           | mathematics in           | recall and apply      |                             |                   |
|      | down slopes and learn                     |           | the foundation tier      | (list a) and which    |                             |                   |
|      | to quantify acceleration                  |           | examination papers       | they are required     |                             |                   |
|      | as the rate of change of                  |           | will be equivalent to    | to select from a list |                             |                   |
|      | velocity. Students will                   |           | Key Stage 3              | and apply (list b).   |                             |                   |
|      | learn the meaning of                      |           | mathematics. The         |                       |                             |                   |
|      | the symbols u and v                       |           | minimum level of         |                       |                             |                   |
|      | and practice using two                    |           | mathematics in the       |                       |                             |                   |
|      | of the equations of                       |           | higher tier              |                       |                             |                   |
|      | motion a= <u>v-u</u> and v <sup>2</sup> - |           | examination papers       |                       |                             |                   |
|      | u <sup>2</sup> = 2 x a x x.               |           | will be equivalent to    |                       |                             |                   |
|      | Students will plot and                    |           | foundation tier GCSE     |                       |                             |                   |
|      | analyse velocity-time                     |           | in Mathematics.          |                       |                             |                   |
|      | graphs to find                            |           |                          |                       |                             |                   |
|      | acceleration and the                      |           |                          |                       |                             |                   |
|      | total distance travelled.                 |           |                          |                       |                             |                   |
|      | Students determine the                    |           |                          |                       |                             |                   |
|      | speed of objects by                       |           |                          |                       |                             |                   |
|      | various methods                           |           |                          |                       |                             |                   |
|      | including the use of                      |           |                          |                       |                             |                   |
|      | light gates.                              |           |                          |                       |                             |                   |



| Unit              | Core knowledge/skill                 | Sequence              | Assessment | Literacy,        | Key areas of ACP and        | Home learning and |
|-------------------|--------------------------------------|-----------------------|------------|------------------|-----------------------------|-------------------|
|                   | development                          |                       |            | numeracy, PSHE,  | VAA development:            | enrichment        |
|                   |                                      |                       |            | FBV, other links |                             |                   |
| Motion and Forces | Students will learn that             | SP2a Resultant Forces |            |                  | Risk-taking                 |                   |
|                   | an object remains                    | SP2b Newton's First   |            |                  | Being brave enough to       |                   |
|                   | stationary or moving                 | Lae                   |            |                  | work in unfamiliar contexts |                   |
|                   | uniformly in a straight              | SP2c Mass and Weight  |            |                  | such as applying Newton's   |                   |
|                   | line unless acted upon               | SP2d Newton's         |            |                  | Laws where the true nature  |                   |
|                   | by a resultant force                 | Second Law            |            |                  | of motion is generally      |                   |
|                   | (Newton's first law).                | SP2e Newton's Third   |            |                  | masked by friction or air   |                   |
|                   | They will apply this                 | Law                   |            |                  | resistance on Earth.        |                   |
|                   | when the resultant force             | SP2f Momentum         |            |                  |                             |                   |
|                   | is zero and there is no              | SP2g Stopping         |            |                  | Complex and multi-step      |                   |
|                   | change in velocity and               | Distances             |            |                  | problem solving             |                   |
|                   | when the resultant force             | SP2h Braking Distance |            |                  | to break down a task (e.g., |                   |
|                   | is not zero and the                  | and Energy            |            |                  | equations), decide on a     |                   |
|                   | resultant force produces             | SP2i Crash Hazards    |            |                  | suitable approach, and then |                   |
|                   | an acceleration F=m x a              |                       |            |                  | act. For example appealing  |                   |
|                   | (Newton's second law).               |                       |            |                  | to the conservation of      |                   |
|                   | Students will recall and             |                       |            |                  | momentum to analyse the     |                   |
|                   | apply F=mx a to various              |                       |            |                  | motion of bodies pre- and   |                   |
|                   | situations when objects              |                       |            |                  | post- impact.               |                   |
|                   | have a force applied.                |                       |            |                  |                             |                   |
|                   | This is then applied to              |                       |            |                  |                             |                   |
|                   | the special case when                |                       |            |                  |                             |                   |
|                   | an object is in the                  |                       |            |                  |                             |                   |
|                   | Earth's gravitational                |                       |            |                  |                             |                   |
|                   | field and the                        |                       |            |                  |                             |                   |
|                   | acceleration is g                    |                       |            |                  |                             |                   |
|                   | (10m/s <sup>2</sup> ). The weight of |                       |            |                  |                             |                   |
|                   | an object can then be                |                       |            |                  |                             |                   |
|                   | determined using W                   |                       |            |                  |                             |                   |
|                   | =m x g. Mass is                      |                       |            |                  |                             |                   |
|                   | constant, but weight is              |                       |            |                  |                             |                   |
|                   | measured with a spring               |                       |            |                  |                             |                   |
|                   | balance and depends                  |                       |            |                  |                             |                   |



| Unit            | Core knowledge/skill       | Sequence:              | Assessment | Literacy,        | Key areas of ACP and         | Home learning and |
|-----------------|----------------------------|------------------------|------------|------------------|------------------------------|-------------------|
|                 | development                |                        |            | numeracy, PSHE,  | VAA development:             | enrichment        |
|                 |                            |                        |            | FBV, other links |                              |                   |
|                 | on the gravitational field |                        |            |                  |                              |                   |
|                 | strength g. Objects        |                        |            |                  |                              |                   |
|                 | interacting are studied    |                        |            |                  |                              |                   |
|                 | and the forces at work     |                        |            |                  |                              |                   |
|                 | (Newton's Third Law).      |                        |            |                  |                              |                   |
|                 | Momentum is                |                        |            |                  |                              |                   |
|                 | introduced as a            |                        |            |                  |                              |                   |
|                 | conserved quantity, $p =$  |                        |            |                  |                              |                   |
|                 | m x v. Force is            |                        |            |                  |                              |                   |
|                 | described as the rate of   |                        |            |                  |                              |                   |
|                 | change of momentum.        |                        |            |                  |                              |                   |
|                 | Stopping distances of a    |                        |            |                  |                              |                   |
|                 | vehicle including          |                        |            |                  |                              |                   |
|                 | thinking distance and      |                        |            |                  |                              |                   |
|                 | braking distance will      |                        |            |                  |                              |                   |
|                 | also be studied.           |                        |            |                  |                              |                   |
| Conservation of | Students will use          | SP3a Energy Stores     |            |                  | Connection finding (linking) |                   |
| Energy          | equations to calculate     | and Transfers          |            |                  | to use connections for       |                   |
|                 | gravitational potential    | SP3b Energy Efficiency |            |                  | example, the burning of      |                   |
|                 | energy and kinetic         | SP3c Keeping Warm      |            |                  | fossil fuels and climate     |                   |
|                 | energy and be able to      | SP3d Stored Energies   |            |                  | change, the increasing use   |                   |
|                 | make graphical             | SP3e Non-renewable     |            |                  | of renewable resources       |                   |
|                 | representation of          | Resources              |            |                  |                              |                   |
|                 | energy transfers using     | SP3f Renewable         |            |                  | Complex and multi-step       |                   |
|                 | energy diagrams, a         | Resources              |            |                  | problem solving              |                   |
|                 | Sankey diagrams should     |                        |            |                  | to break down a task (e.g.,  |                   |
|                 | be covered.                |                        |            |                  | graphs), decide on a         |                   |
|                 | Underpinning this is the   |                        |            |                  | suitable approach, and then  |                   |
|                 | concept of conservation    |                        |            |                  | act. For example,            |                   |
|                 | of energy.                 |                        |            |                  | interpreting graphs of non-  |                   |
|                 | Students will use          |                        |            |                  | renewable and renewable      |                   |
|                 | diagrams to understand     |                        |            |                  | energy resources usage       |                   |
|                 | the meaning of             |                        |            |                  | over time                    |                   |



| Unit | Core knowledge/skill<br>development: | Sequence | Assessment | Literacy,<br>numeracy, PSHE,<br>FBV, other links | Key areas of ACP and VAA development: | Home learning and enrichment |
|------|--------------------------------------|----------|------------|--------------------------------------------------|---------------------------------------|------------------------------|
|      | efficiency and be able               |          |            |                                                  |                                       |                              |
|      | to express this                      |          |            |                                                  |                                       |                              |
|      | quantitatively. The idea             |          |            |                                                  |                                       |                              |
|      | of insulation to                     |          |            |                                                  |                                       |                              |
|      | conserve heat is                     |          |            |                                                  |                                       |                              |
|      | discussed along with                 |          |            |                                                  |                                       |                              |
|      | thermal conductivity.                |          |            |                                                  |                                       |                              |
|      | Students will study the              |          |            |                                                  |                                       |                              |
|      | main energy sources to               |          |            |                                                  |                                       |                              |
|      | develop an                           |          |            |                                                  |                                       |                              |
|      | understanding of                     |          |            |                                                  |                                       |                              |
|      | present trends in the                |          |            |                                                  |                                       |                              |
|      | supply and usage of                  |          |            |                                                  |                                       |                              |
|      | energy sources – both                |          |            |                                                  |                                       |                              |
|      | non-renewable and                    |          |            |                                                  |                                       |                              |
|      | renewable.                           |          |            |                                                  |                                       |                              |