

Year 11 Physics Curriculum

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
Static Electricity	For those studying	SP11a Charges and	Starter questions	Literacy: key	Meta-thinking – Meta-	Homework typically set
	separate physics,	Static Electricity		words,	cognition, transferring	via online platforms such
	there will be revision	SP11b Dangers and	Exam-type	definitions,	knowledge from one	as Tassomai, Isaac
	of static electricity	Uses of Static	questions	summary notes.	circumstance to another.	Physics, Active Learn.
	from KS3 including	Electricity			For example, the concept	
	charging through	SP11c Electric Fields	Hinge questions		of a field, ubiquitous in	Exam preparation via
	friction, common				physics, is applied to	exam papers
	electrostatic		Use of web-based		electrostatic forces and	
	phenomena, and		applications to	Numeracy:	effects.	
	electric fields.		assess knowledge in	summary notes,		
			lesson (e.g. Isaac	equation	Connection finding	
			Physics, Educake,	practice, students	(linking)	
			Active Learn etc.)	are advised to	to use connections from	
				practice using the	past experiences (KS3) of	
			End-of-topic tests.	free 23 Equations	fields to develop	
				арр	understanding in this	
					topic.	
			End of year exam	General maths		
Magnetism and the	Students will learn the	SP12a Magnets and	(PPE).	skills (e.g.	Risk-taking	
Motor Effect	difference between	Magnetic Fields		rearranging	Being brave enough to	
	permanent and	SP12b	Mathematical skills	equations, graph	work in unfamiliar	
	induced magnets and	Electromagnetism	will be assessed	plotting,	contexts such as the	
	describe the uses of	SP12c Magnetic	through	standards form ,	application of the left	
	permanent and	Forces	examinations. The	SI prefixes)	hand rule to define the	
	temporary magnetic		minimum level of		direction of the magnetic	
	materials. The Law of		mathematics in	Equations	force vector.	
	Magnetism will be		the foundation tier	students are		
	reviewed and		examination papers	required to recall	Connection finding	
	students will be able		will be equivalent to		(linking)	

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
	to describe uniform		Key Stage 3	and apply (list a)	to use connections from	
	magnetic fields and		mathematics. The	and which	past experiences of	
	the field of bar		minimum level of	they are required	vectors. Magnitude of	
	magnets and know		mathematics in the	to select from a	the magnetic force	
	the shape of a		higher tier	list and apply (list	vector is found using	
	magnetic field is		examination papers	b).	F=B x lx l, the direction	
	represented by field		will be equivalent to		by the LHR, see above,	
	lines which do not		foundation tier		thus emphasising the	
	cross, an arrow gives		GCSE in		properties of a vector	
	the direction of the		Mathematics.			
	field and the closer					
	the lines are together					
	the stronger the					
	magnetic field.					
	Students will learn					
	how to use a plotting					
	compass to show the					
	shape and direction					
	of a magnetic field					
	around a bar magnet,					
	the shape and					
	direction of a uniform					
	magnetic field, and					
	the Earth's magnetic					
	field.					
	Revision of					
	electromagnetism					
	leading to					
	understanding that a					
	current carrying					

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
	conductor always					
	produces a magnetic					
	field. Investigating the					
	shape and direction					
	of the magnetic field					
	of a long straight					
	current carrying					
	conductor using iron					
	fillings and a					
	compass.					
	Investigating the					
	magnetic field inside					
	and outside a coil of					
	wire carrying a					
	current (solenoid).					
	Investigating the					
	force on a current					
	carrying conductor in					
	a magnetic field and					
	using Flemings Left					
	Hand Rule (Motor					
	Rule) to find the					
	direction of the force					
	on a current carrying					
	wire in a magnetic					
	field. Using the					
	equation F=B x lx l to					
	calculate the force on					
	the conducting wire.					

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
Electromagnetic	Revise alternating	SP13a			Generalisation	
Induction	currents (a.c).	Electromagnetic			Knowledge of	
	Structure of a	Induction			electromagnetism and	
	transformers, action	SP13b The National			prior knowledge about	
	of a transformers in	Grid			electrical power, current	
	stepping up or	SP13c Transformers			and voltage come	
	stepping down	and Energy			together in the workings	
	voltages. The use of				of the National Grid	
	transformers to					
	reduce the heat loss				Complex and multi-step	
	from the transmission				problem solving	
	lines of the National				to break down a task	
	Grid. Transformers				(e.g., equations), decide	
	are used to step-up				on a suitable approach,	
	voltages produced by				and then act. For	
	power stations to				example, considering the	
	high voltages for				transformer turns /	
	transmission. The				voltages and power	
	current is then low				equations	
	and heat loss					
	reduced. The voltage					
	is then stepped down					
	by a transformer for					
	use by homes and					
	factories. Use of					
	power equation for					
	transformers that are					
	100% efficient.					

Unit	Core knowledge/skill	Sequence	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development:			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
The Particle Model	Revision of the states	SP14a Particles and			Connection finding	
	of matter, with	Density			(linking)	
	reference to the	SP14a Core Practical			to use connections from	
	movement and	 Investigating 			the microscopic	
	arrangement of	Densities			behaviour of particles to	
	particles. The	SP14b Energy and			explain macroscopic	
	equation used to	Changes of State			properties such as	
	determine density will	SP14c Energy			density, temperature and	
	also be revised. Core	Calculations			pressure. This also leads	
	practicals, measuring	SP14c Core Practical			to the idea of a scientific	
	density of a solid	 Investigating 			model, its applications	
	(regular and irregular)	Water			and limitations	
	and liquids will be	SP14d Gas				
	carried out with	Temperature and			Enquiring	
	emphasis on accuracy	Pressure			challenge assumptions/	
	of measurements,	SP14e Gas Pressure			concepts and seek	
	control variables	and Volume			evidence for assertions.	
	taking averages and				For example, the	
	treatment of				adoption of the Kelvin	
	anomalous results.				scale, a system of	
	The models of the				temperature	
	kinetic theory for the				measurement new to	
	states of matter will				students which is	
	then be used to				traceable to the	
	explain the				thermodynamic	
	differences in the				behaviour of matter and	
	density of substances.				therefore universal. The	
	Physical changes of				Celsius scale in contrast	
	state are compared				then appears arbitrary.	

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
	with chemical					
	changes.					
	Students will learn					
	that heating a system					
	changes the energy					
	stored within the					
	system and either					
	produces a change in					
	temperature or a					
	change in state.					
	Students will then					
	learn that the specific					
	heat capacity of a					
	substance is a					
	measure of the					
	amount of thermal					
	energy required to					
	change the					
	temperature of 1 kg					
	of a substance by 1°C					
	and that specific					
	latent heat is the					
	amount of thermal					
	energy required to					
	change the state of					
	1kg of a substance.					
	Both processes are					
	then expressed					
	quantitatively, and					
	students practice the					

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
				FBV, other links		
	use of the equations					
	$\Delta Q = m x c x \Delta 2$ and					
	Q =m x L. The					
	processes will be					
	exemplified by					
	carrying out					
	experiments to					
	measure the specific					
	heat capacity of water					
	and by obtaining a					
	temperature – time					
	graph for melting ice.					
	Students will learn					
	that the pressure					
	exerted by a gas is					
	due to the motion of					
	the particles of the					
	gas and how					
	temperature changes					
	produce changes in					
	pressure at constant					
	volume. They will also					
	learn the relevance of					
	absolute zero and the					
	conversion between					
	°C and Kelvin (K).					
	Students studying					
	separate physics will					
	relate pressure and					
	volume at a constant					

Unit:	Core knowledge/skill development:	Sequence:	Assessment:	Literacy, numeracy, PSHE, FBV, other links	Key areas of ACP and VAA development:	Home learning and enrichment
	temperature in terms of particle collisions with the walls of a container and quantitatively using the equation $P_1 \times V_1 =$ $P_2 \times V_2$ and explain how doing work on a gas can raise the temperature of the gas.					
Forces and Matter	Students learn, by testing materials, the difference between elastic and plastic and the forces can extend compress or bend materials. Students investigate the extension of a spring and plot a graph of force against extension to find the spring constant k. The idea of work done is introduced as force x distance and that the work done in stretching the spring is the area under the	SP15a Bending and Stretching SP15b Extension and Energy Transfers SP15b Core Practical - Investigating Springs SP15c Pressure in Fluids SP15d Pressure and Upthrust			Risk-taking Being brave enough to work in unfamiliar contexts such as the idea of displacement of a fluid by an object and the resulting upthrust. Generalisation Knowledge of upthrust and pressure in fluids can be generalised from the classroom cork to ocean- going vessels and submarines.	

Unit	Core knowledge/skill	Sequence:	Assessment	Literacy,	Key areas of ACP and	Home learning and
	development			numeracy, PSHE,	VAA development:	enrichment
-				FBV, other links		
	graph which equates					
	to $\frac{1}{2}$ x k x x ² This topic					
	revises the work done					
	on density, Measuring					
	Density, and Pressure,					
	and takes a more					
	quantitative					
	approach. Students					
	calculate the pressure					
	they exert on the					
	ground improving the					
	accuracy of					
	measurement and					
	use the equation					
	P=F/A Experiments					
	which show the effect					
	of air pressure and					
	fluid pressure and					
	liquid pressure are					
	demonstrated to give					
	students an					
	understanding of the					
	equation P=px g x h					
	Spring balances are					
	used to measure					
	upthrusts of liquids					
	and students are able					
	to show that upthrust					
	is equal to the weight					
	of water displaced					

Unit:	Core knowledge/skill development:	Sequence	Assessment	Literacy, numeracy, PSHE, FBV, other links	Key areas of ACP and VAA development:	Home learning and enrichment
	and apply this principle.					